布朗运动
2025-08-10 12:21:53
在1905年,爱因斯坦提出了相关理论。他的理論有兩個部分:第一部分定義布朗粒子擴散方程式,其中的擴散係數與布朗粒子平均平方位移相關,而第二部分連結擴散係數與可測量的物理量。以此方式,愛因斯坦的理論可決定原子的大小,一莫耳有多少原子,或氣體的克分子量。根據阿伏伽德罗定律,所有理想氣體在標準溫度和壓力下體積為22.414升,其中包含的原子的數目被稱為「阿伏伽德罗常数」。由氣體的莫耳質量除以阿伏伽德罗常数等同原子量。
爱因斯坦论证的第一部分是,确定布朗粒子在一定的时间内运动的距离。[3][來源請求] 经典力学无法确定这个距离,因为布朗粒子将会受到大量的撞击,每秒大约发生 1014 次撞击。[4]因此,爱因斯坦将之简化,即讨论一个布朗粒子团的运动[來源請求]。
他把粒子在一个的空间中,把布朗粒子在一维方向上的运动增量 (x) 视作一个随机值(
Δ
{\displaystyle \Delta }
或者 x,并对其坐标进行变换,让原点成为粒子运动的初始位置)并给出概率密度函数
φ
(
Δ
)
{\displaystyle \varphi (\Delta )}
。另外,他假设粒子的数量有限,并扩大了密度(单位体积内粒子数量),展开成泰勒级数 。
ρ
(
x
,
t
)
+
τ
∂
ρ
(
x
)
∂
t
+
⋯
=
ρ
(
x
,
t
+
τ
)
=
∫
−
∞
+
∞
ρ
(
x
+
Δ
,
t
)
⋅
φ
(
Δ
)
d
Δ
=
ρ
(
x
,
t
)
⋅
∫
−
∞
+
∞
φ
(
Δ
)
d
Δ
+
∂
ρ
∂
x
⋅
∫
−
∞
+
∞
Δ
⋅
φ
(
Δ
)
d
Δ
+
∂
2
ρ
∂
x
2
⋅
∫
−
∞
+
∞
Δ
2
2
⋅
φ
(
Δ
)
d
Δ
+
⋯
=
ρ
(
x
,
t
)
⋅
1
+
0
+
∂
2
ρ
∂
x
2
⋅
∫
−
∞
+
∞
Δ
2
2
⋅
φ
(
Δ
)
d
Δ
+
⋯
{\displaystyle {\begin{aligned}\rho (x,t)+\tau {\frac {\partial \rho (x)}{\partial t}}+\cdots =\rho (x,t+\tau )={}&\int _{-\infty }^{+\infty }\rho (x+\Delta ,t)\cdot \varphi (\Delta )\,\mathrm {d} \Delta \\={}&\rho (x,t)\cdot \int _{-\infty }^{+\infty }\varphi (\Delta )\,d\Delta +{\frac {\partial \rho }{\partial x}}\cdot \int _{-\infty }^{+\infty }\Delta \cdot \varphi (\Delta )\,\mathrm {d} \Delta \\&{}+{\frac {\partial ^{2}\rho }{\partial x^{2}}}\cdot \int _{-\infty }^{+\infty }{\frac {\Delta ^{2}}{2}}\cdot \varphi (\Delta )\,\mathrm {d} \Delta +\cdots \\={}&\rho (x,t)\cdot 1+0+{\frac {\partial ^{2}\rho }{\partial x^{2}}}\cdot \int _{-\infty }^{+\infty }{\frac {\Delta ^{2}}{2}}\cdot \varphi (\Delta )\,\mathrm {d} \Delta +\cdots \end{aligned}}}
第一行中的第二个等式是被
φ
{\displaystyle \varphi }
这个函数定义的。第一项中的积分等于一个由概率定义函数,第二项和其他偶数项(即第一项和其他奇数项)由于空间对称性而消失。化简可以得到以下关系关系:
∂
ρ
∂
t
=
∂
2
ρ
∂
x
2
⋅
∫
−
∞
+
∞
Δ
2
2
τ
⋅
φ
(
Δ
)
d
Δ
+
(更 高 阶 的 项 )
{\displaystyle {\frac {\partial \rho }{\partial t}}={\frac {\partial ^{2}\rho }{\partial x^{2}}}\cdot \int _{-\infty }^{+\infty }{\frac {\Delta ^{2}}{2\,\tau }}\cdot \varphi (\Delta )\,\mathrm {d} \Delta +{\text{(更 高 阶 的 项 )}}}
拉普拉斯算子之前的系数,是下一刻的随机位移量
Δ
{\displaystyle \Delta }
,让 D 为质量扩散系数:
D
=
∫
−
∞
+
∞
Δ
2
2
τ
⋅
φ
(
Δ
)
d
Δ
{\displaystyle D=\int _{-\infty }^{+\infty }{\frac {\Delta ^{2}}{2\,\tau }}\cdot \varphi (\Delta )\,\mathrm {d} \Delta }
那么在 t 时刻 x 处的布朗粒子密度 ρ 满足扩散方程:
∂
ρ
∂
t
=
D
⋅
∂
2
ρ
∂
x
2
,
{\displaystyle {\frac {\partial \rho }{\partial t}}=D\cdot {\frac {\partial ^{2}\rho }{\partial x^{2}}},}
假設在初始時刻t = 0時,所有的粒子從原點開始運動,擴散方程的解
ρ
(
x
,
t
)
=
ρ
0
4
π
D
t
e
−
x
2
4
D
t
.
{\displaystyle \rho (x,t)={\frac {\rho _{0}}{\sqrt {4\pi Dt}}}e^{-{\frac {x^{2}}{4Dt}}}.}